Dodecatitanates: A New Family of Stable Polyoxotitanates

V. W. Day,*,1a T. A. Eberspacher,1a W. G. Klemperer,*,1b and C. W. Park^{1b}

> Department of Chemistry, University of Nebraska Lincoln, Nebraska 68588 The Beckman Institute for Advanced Science and Technology Department of Chemistry University of Illinois, Urbana, Illinois 61801

> > Received June 7, 1993

Fundamental studies of metal alkoxide hydrolysis/condensation, the chemical basis of sol-gel polymerization,² are complicated by two factors: the extreme moisture sensitivity of most metal alkoxide precursors and the tendency of alkoxides to form mixtures of structurally complex species upon hydrolysis.³ In the research reported here, we demonstrate that both of these complications can be circumvented in titanium alkoxide chemistry by using isopropyl titanate precursors. Two titanium alkoxides, α_1 - and α_{2} -[Ti₁₂O₁₆](OPrⁱ)₁₆, are reported that display very low moisture sensitivity in alcohol solution. A third alkoxide, $[Ti_{11}O_{13}](OPr^i)_{18}$, is identified as the sole (>95%) reaction product of $Ti(OPr^i)_4$ hydrolysis by ca. 1/2 equiv of water in *i*-PrOH solution. All these new complexes are members of a new structural family of remarkably stable polyoxotitanate derivatives that display unusual regioselective alkoxide exchange with alcohols.

Reaction of Ti(OPrⁱ)₄ with 1 equiv of water in *i*-PrOH solution at 100 °C for 3 days yields as the sole products a 1:1 mixture of two isomeric complexes, α_1 -[Ti₁₂O₁₆](OPrⁱ)₁₆, 1, and α_2 -[Ti₁₂O₁₆]- $(OPr^i)_{16}$, 2. These materials can be isolated in pure form and characterized using elemental analysis, ¹⁷O and ¹³C¹H NMR spectroscopy, and in the case of 1 only, single-crystal X-ray diffraction.⁴ Pure samples of 1 or 2 are isomerized to a 1:1 equilibrium mixture of 1 and 2 by heating to 90 °C in toluene for 3 h.

In the solid state, α_1 -[Ti₁₂O₁₆](OPrⁱ)₁₆(1) has the C_{2h} structure shown in Figure 1a. Its α -Ti₁₂O₃₂¹⁶⁻ titanate framework,⁵ shown in Figure 2a, is identical to the organostannate framework previously observed for $[(RSn)_{12}O_{14}(OH)_6]^{2+}$ complexes, R = Pri 8 and Bun,9 and the fluorovanadate framework observed for $[V_{12}O_{24}F_2(OH)_6]^{6-.10}$ This D_{3d} framework comprises a cage of 18 bridging oxygen atoms occupying the vertices of an elongated triangular gyrobicupola, a distorted icosahedron of 12 TiO groups capping the square faces of this cage, plus two oxygen atoms that are encapsulated by the cage. Compound 1 retains its structure in hydrocarbon solution according to NMR spectroscopic measurements:⁴ five methylene ¹³C resonances, one μ_2 -oxide ¹⁷O

(1) (a) University of Nebraska.
(b) University of Illinois.
(c) Brinker, C. J.; Scherer, G. W. Sol-Gel Science; Academic Press: San

Diego, 1990. (3) Bradley, D. C.; Mehrotra, R. C.; Gaur, D. P. Metal Alkoxides; Academic

Press: New York, 1978.

(4) For preparative, analytical spectroscopic, and X-ray crystallographic details, see the paragraph at the end of this paper regarding supplementary material.

(5) Just as the $T_d \alpha$ -SiW₁₂O₄₀⁴ Keggin structure can be converted to its $C_{3\nu}\beta$ isomer by rotation of a W₃O₁₃ group by 60°, so can the $D_{3d}\alpha$ -Ti₁₂O₃₂¹⁶ framework be converted to a $D_{3k}\beta$ isomer by rotating a Ti₃O₁₃ group by 60°. Although the β -Ti₁₂O₃₂¹⁶ framework has not been observed yet in polytitanate chemistry, a derivative is known in polyvanadate chemistry, namely, the $V_{15}O_{36}Cl^{6-}$ ion.7

(6) Pope, M. T. Heteropoly and Isopoly Oxometalates; Springer-Verlag: Berlin, Heidelberg, FRG, 1983; p 26.
(7) Müller, A.; Krickenmeyer, E.; Penk, M.; Walberg, H.-J.; Bögge, H.

Angew. Chem., Int. Ed. Engl. 1987, 26, 1045. (8) Puff, H.; Reuter, H. J. Organomet. Chem. 1989, 373, 173.

(9) Ribot, F.; Banse, F.; Sanchez, C. Mater. Res. Soc. Symp. Proc. 1992, 271, 45

(10) Müller, A.; Rohlfing, R.; Krickemeyer, W.; Bögge, H. Angew. Chem., Int. Ed. Engl. 1993, 32, 909.

Figure 1. (a) The X-ray crystallographically-determined pseudo- C_{2h} structure for α_1 -[Ti₁₂O₁₆](OPrⁱ)₁₆(1) with Ti, O, and C atoms represented by cross-hatched, shaded, and open spheres, respectively. The molecule possesses rigorous crystallographic Ci-1 symmetry: atoms labeled with a prime (') are related to those labeled without by this inversion center. Half of the Ti atoms in 1 are 6-coordinate, and the other half are 5-coordinate. Each molecule of 1 contains two μ_3 -O²⁻ ligands that bridge three 6-coordinate Ti atoms, $12 \mu_3$ -O²-ligands that bridge one 6-coordinate and two 5-coordinate Ti atoms, and two μ_2 -O²⁻ ligands that bridge two 6-coordinate Ti atoms. Each molecule of 1 also contains four μ_2 -(OPrⁱ)ligands that bridge two 6-coordinate Ti atoms and 12 terminally-bonded (OPrⁱ) ligands. (b) The X-ray crystallographically-determined structure of $[Ti_{11}O_{13}](OPr^i)_{13}(OEt)_5$ (3a) with all atoms represented as in Figure 1a. The structure of 3a can be derived from 1 by removing one of the 5-coordinate Ti atoms of 1 and its terminally bonded (OPri)- ligand, replacing one of its basal O²⁻ ligands with an (OPrⁱ⁾⁻ ligand, replacing the two μ_2 -O²⁻ ligands in 1 by μ_2 -(OPrⁱ)⁻ ligands, and finally replacing the terminally-bonded (OPri)- ligands on each of the five remaining 5-coordinate "girdle" Ti atoms by terminally-bonded (OEt)- ligands. Atoms of 3a are labeled similarly to those of 1: atoms labeled with an asterisk (*) are related to those labeled without by a pseudo inversion center which is rigorously present in 1 but which cannot be present in 3a.

resonance,¹¹ and four μ_3 -oxide ¹⁷O resonances¹¹ are observed (see Figure 2a). The isomeric α_2 -[Ti₁₂O₁₆](OPrⁱ)₁₆ molecule is assigned the C_2 structure shown in Figure 2b using solution NMR

0002-7863/93/1515-8469\$04.00/0

Figure 2. (a) α -Ti₁₂O₃₂¹⁶⁻ core of the $C_{2h} \alpha_1$ -[Ti₁₂O₁₆](OR)₁₆ structure, (b) α -Ti₁₂O₃₂¹⁶⁻ core of the proposed $C_2 \alpha_2$ -[Ti₁₂O₁₆](OR)₁₆ structure, and (c) α -Ti₁₁O₃₁¹⁸⁻ core of the $C_1 \alpha$ -[Ti₁₁O₁₃](OR)₁₈ structure. Titanium atoms are represented by small filled spheres, oxide oxygens by large open spheres, and alkoxide oxygens by large shaded spheres. In parts a and b one member from each set of symmetry-equivalent oxygen atoms is labeled, using numerals for alkoxide oxygens and letters for oxide oxygens.

spectroscopy: the expected eight methine ${}^{13}C$ resonances and single μ_2 -oxide ${}^{17}O$ resonance 11 are observed; five of the expected seven μ_3 -oxide ${}^{17}O$ resonances 11 are resolved.

When compounds 1 and 2 are treated repeatedly with ethanol, two new compounds are obtained, α_1 -[Ti₁₂O₁₆](OPrⁱ)₁₀(OEt)₆ (1a) and α_2 -[Ti₁₂O₁₆](OPrⁱ)₁₀(OEt)₆ (2a).⁴ In both cases, alkoxide exchange is effected with retention of the titanium oxide core structure, since the ¹⁷O NMR spectra of oxide oxygens in 1 and 1a (and 2 and 2a) are virtually indistinguishable. A singlecrystal X-ray diffraction study and a ¹³C{¹H} solution NMR spectroscopic study define a structure for 1a derived from the structure of 1 by replacing with ethoxide groups those six isopropoxide groups that are terminally bonded to five-coordinate titanium centers. ¹³C{¹H} NMR spectroscopy supports an analogous structure for 2a derived from the structure of 2, α_2 -[Ti₁₂O₁₆](OPrⁱ)₁₆ (see Figure 2b): five isopropoxide methine carbon resonances and three ethoxide methylene carbon resonances are observed.⁴

(11) Day, V. W.; Eberspacher, T. A.; Klemperer, W. G.; Park, C. W.; Rosenberg, F. S. J. Am. Chem. Soc. 1991, 113, 8190.

Both α_1 - and α_2 - $[Ti_{12}O_{16}](OPr^i)_{16}$ fail to react measurably with water after 12 h under conditions typically associated with sol-gel polymerization, namely, addition of 4 equiv of water to a 0.03 M 2-propanol solution. Sol-gel polymerization proceeds readily, however, if alcohol solvent is avoided. Addition of 6 equiv of water to a 0.05 M solution of α_1 - $[Ti_{12}O_{16}](OPr^i)_{16}$ in 5/1 v/v toluene/acetonitrile, for example, yields a cloudy gel within 2 h at ambient temperature.

Hydrolysis of Ti(OPrⁱ)₄ with 0.3-0.8 equiv of water at ambient temperature in 2-propanol solution yields a solution whose ¹⁷O NMR spectrum shows three μ_2 -oxide resonances plus an unresolved set of overlapping μ_3 -oxide resonances.¹² These resonances arise from a single complex, α -[Ti₁₁O₁₃](OPrⁱ)₁₈, 3, that has been isolated and converted into the mixed alkoxide α -[Ti₁₁O₁₃]-(OPrⁱ)13(OEt)5, 3a, by reaction with ethanol. Both complexes have been formulated and characterized using elemental analysis, ¹³C¹H and ¹⁷O NMR spectroscopy, and in the case of **3a** only, single-crystal X-ray diffraction.⁴ The α-[Ti₁₁O₁₃](OPrⁱ)₁₃(OEt)₅ molecule, 3a, has the solid-state structure shown in Figure 1b containing the titanium-oxygen framework of Figure 2c. Comparison of Figure 1b with Figure 1a (or Figure 2c with Figure 2a,b) reveals that the α -Ti₁₁O₃₁¹⁸⁻ structural framework of compound 3a is derived from the α -Ti₁₂O₃₂¹⁶⁻ framework of compounds 1 and 1a by removal of a single titanium atom and its terminal oxygen ligand. Compound 3 is proposed to have the same $C_1 \alpha$ -[Ti₁₁O₁₃](OR)₁₈ structure since its ¹⁷O NMR spectrum is virtually identical to the ¹⁷O NMR spectrum of 3a and its ¹³C¹H NMR spectrum displays 18 fully resolved methine carbon resonances.

The results reported here strongly suggest, but by no means demonstrate, that $Ti(OPr^i)_4$ titania sol-gel polymerization follows fundamentally different molecular growth pathways than analogous silica sol-gel polymerization. In Si(OCH₃)₄ silica sol-gel polymerization, for example, individual monosilicate units serve as monomer units.¹³ In the Ti(OPrⁱ)₄ case, however, our results show that α -[Ti₁₁O₁₃](OPrⁱ)₁₈ molecules are formed initially, and these may serve as molecular building blocks for further polymerization reactions, a possibility now under investigation.

Acknowledgment. The research was supported by the U.S. Department of Energy, Division of Materials Science, under Contract DEFG02-91ER45439.

Supplementary Material Available: Details of all sample preparations and characterization and crystal structure reports, listings of positional and thermal parameters, listings of bond lengths and angles, and persepective structural drawings for 1, 1a, and $3a \cdot C_2H_3OH$ (66 pages); structure factor tables for 1, 1a, and $3a \cdot C_2H_5OH$ (33 pages). Ordering information is given on any current masthead page.

⁽¹²⁾ Day, V. W.; Eberspacher, T. A.; Klemperer, W. G.; Park, C. W.; Rosenberg, F. S. In *Chemical Processing of Advanced Materials*; Hench, L. L., West, J. K., Eds.; Wiley: New York, 1992; p 257.

⁽¹³⁾ Klemperer, W. G.; Ramamurthi, S. D. Mater. Res. Soc. Symp. Proc. 1988, 121, 1.